- I.x^2 +36x + 323 = 0
II.y^2 + 30y +221 = 0
x > yy > xx >= yNo relation.y >= xOption E
I.x^2 +36x + 323 = 0
=> x^2 +17x + 19x +323 = 0
=>x = -17,-19
II.y^2 + 30y +221 = 0
=>y^2 + 13y + 17y + 221 = 0
=>y = -13,-17
y >= x
- I.x^2 +2x – 24 = 0
II.y^2 + 2y – 15 = 0
x >= yx > yy >= xy > xNo relation.Option E
I.x^2 +2x – 24 = 0
=>x^2 + 6x – 4x – 24 = 0
=>x = -6,4
II.y^2 + 2y – 15 = 0
=>y^2 + 5y – 3y – 15 = 0
=>y = -5,3
No relation.
- I.x^2 – 29x + 180 = 0
II.y^2 + 10y – 171 = 0
x > yy > xNo relation.y >= xx >= yOption E
I.x^2 – 29x + 180 = 0
=>x^2 – 20x – 9x + 180 = 0
=>x = 20,9
II.y^2 + 10y – 171 = 0
=>y^2 + 19y – 9y – 171 = 0
=>(y+19)(y - 9) = 0
=>y = -19,9
x >= y
- I.x^2 +15x + 50 = 0
II.y^2 + 23y + 132 = 0
y >= xx >= yy > xx > yNo relation.Option D
I.x^2 +15x + 50 = 0
=>x^2 + 5x + 10x + 50 = 0
=>x = -5,-10
II.y^2 + 23y + 132 = 0
=>y^2 + 11y + 12y + 132 = 0
=>y = -11,-12
x > y
- I.x^2 + 29x + 210 = 0
II.y^2 + 34y + 288 = 0
x >= yy >= xx > yy > xNo relation.Option C
I.x^2 + 29x + 210 = 0
=>x^2 + 15x + 14x + 210 = 0
=>x = -15,-14
II.y^2 + 34y + 288 = 0
=>y^2 + 16y +18y + 288 = 0
=>y = -16,-18
x > y
- I.7x^2 +44x – 35 = 0
II.4y^2 - 33y + 35 = 0
y > xx >= yx > yNo relation.y >= xOption A
I.7x^2 +44x – 35 = 0
=>7x^2 – 5x + 49x – 35 = 0
=>x = -7,5/7
II.4y^2 - 33y + 35 = 0
=>4y^2 – 5y – 28y + 35 = 0
=>y = 7,5/4
y > x
- I.x^2 + 8x – 128 = 0
II.y^2 - 17y + 72 = 0
x >= yNo relation.y > xy >= xx > yOption D
I.x^2 + 8x – 128 = 0
=>x^2 + 16x – 8x – 128 = 0
=>x = 8,-16
II.y^2 - 17y + 72 = 0
=>y^2 – 9y – 8y + 72 = 0
=>y = 9,8
y >= x
- I.x^2 + 5x – 204 = 0
II.y^2 + y – 156 = 0
x >= yNo relation.y >= xx > yy > xOption B
I.x^2 + 5x – 204 = 0
=>x^2 + 17x – 12x – 204 = 0
=>x = -17,12
II.y^2 + y – 156 = 0
=>y^2 + 13y – 12y – 156 = 0
=>y = -13,12
No relation.
- I.x^2 – 28x + 195 = 0
II.y^2 – 36x + 323 = 0
y >= xx > yy > xNo relation.x >= yOption C
I.x^2 – 28x + 195 = 0
=>x^2 – 15x – 13x + 195 = 0
=>x = 15,13
II.y^2 – 36x + 323 = 0
=>y^2 – 17y – 19y + 323 = 0
=>y = 17,19
y > x
- I.x^2 - 10x + 24 = 0
II.y^2 – 18y + 77 = 0
No relation.x > yy >= xx >= yy > xOption E
I.x^2 - 10x + 24 = 0
=>x^2 – 4x – 6x + 24 = 0
=>x = 4,6
II.y^2 – 18y + 77 = 0
=>y^2 – 11y – 7y + 77 = 0
=>y = 11,7
y > x
Sunday, August 18, 2019
Quantitative Aptitude: Quadratic Equations Questions Set 59
Directions(1-10): Find the values of x and y and compare their values and choose a correct option.
Labels:
Quantitative Aptitude
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment