- x3 – 4x2 + 3x = 0
7y3 – 23y2 + 6y = 0xx<=yx>yx>=ynoneOption D
x3 – 4x2 + 3x = 0
This gives x(x2 – 4x + 3) = 0
⇒ x(x - 3)(x - 1) = 0
⇒ x = 0, 1 or 3
7y3 – 23y2 + 6y = 0
⇒y(7y2 – 23y + 6) = 0
⇒y(7y - 2)(y - 3) = 0
⇒ y = 0, 2/7 or 3
x>=y
- x2+34x+289=0
y2+28y+196=0xx<=yx>yx>=ynoneOption A
x2+17x+17x+289=0
So, X =-17
Y = -14
=>x
- 4X2 + 24X + 36 =0
5Y2 + 20Y + 20 =0xx<=yx>yx>=ynoneOption A
4X2 + 24X + 36 =0
X2 + 6X + 9 =0
X2 + 3X + 3x + 9 =0
X = -3
5Y2 + 20Y + 20 =0
Y2 + 4Y + 4 =0
Y2 + 4Y + 4y + 4 =0
Y= -2
So, Y>X
- x5 = 32
y10 = 1024xx<=yx>yx>=ynoneOption D
x = 2 and y = + /- 2
- x2 + x = 56
y2 - 17y + 72 = 0xx<=yx>yx>=ynoneOption A
x2 + x = 56
x2 + 8x - 7x -56 = 0
x(x+8) -7 (x+8) =0
(x+8) (x-7) =0
x= -8 , 7
y2 - 17y + 72 = 0
y2 - 9y - 8y + 72 =0
y(y-9) -8(y-9) = 0
(y-9) (y-8) =0
y= 9, 8
x < y
- 3x² +13x +14 = 0
3y²+11y+10 = 0xx<=yx>yx>=ynoneOption B
. 3x² +13x +14 = 0
=> (3x+7) (x+2)
=> x = -7/3, -2
3y²+11y+10 = 0
=> (y+2) (3y+5)
=> y = -2 , -5/3
So x ≤ y
- 144x2 – 23 = 2
12y+√25=√100xx<=yx>yx>=ynoneOption B
144x2 = 23+2=25
x2=25/144
=>x=+or- 5/12
12y+√25=√100
12y= = 5
y=5/12
y ≥ x
- x2 – 32x + 255 = 0
y2 - 39y + 378= 0xx<=yx>yx>=ynoneOption A
x2 – 32x + 255 = 0
x2 - 15x – 17x + 255 = 0
x(x-15)-17(x-15)=0
(x-15)(x-17)=0
x=15,17
y2 - 39y + 378 = 0
y2 - 18y – 21y + 378 = 0
y(y-18)-21(y-18)=0
(y-18)(y-21)=0
y=18, 21
y>x
- x2 – 15x + 84 = 4x
y2 – 15y + 156 = 10yxx<=yx>yx>=ynoneOption B
x2 – 15x + 84 = 4x
⇒ x2 – 19x + 84 = 0
⇒ x2 – 12x – 7x + 84 = 0
⇒ x( x – 12) – 7 ( x – 12) = 0
⇒ (x – 7) (x – 12) = 0
⇒ x = 7, 12
y2 – 15y + 156 = 10y
⇒ y2 -25y + 156 = 0
⇒ y2 – 12y – 13y + 156 = 0
⇒ y( y – 12) – 13 ( y – 12) = 0
⇒ (y – 13) (y – 12) = 0
⇒ y = 13, 12
∴ y ≥ x
- 6x + 3y = 24
x +2y = 8.5xx<=yx>yx>=ynoneOption A
x = 2.5 y = 3 heyce, x < y
Wednesday, February 19, 2020
Quantitative Aptitude: Quadratic Equations Questions Set 64
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment