Wednesday, February 19, 2020

Quantitative Aptitude: Quadratic Equations Questions Set 64

  1. x3 – 4x2 + 3x = 0
    7y3 – 23y2 + 6y = 0
    x
    x<=y
    x>y
    x>=y
    none
    Option D
    x3 – 4x2 + 3x = 0
    This gives x(x2 – 4x + 3) = 0
    ⇒ x(x - 3)(x - 1) = 0
    ⇒ x = 0, 1 or 3
    7y3 – 23y2 + 6y = 0
    ⇒y(7y2 – 23y + 6) = 0
    ⇒y(7y - 2)(y - 3) = 0
    ⇒ y = 0, 2/7 or 3
    x>=y

     


  2. x2+34x+289=0
    y2+28y+196=0
    x
    x<=y
    x>y
    x>=y
    none
    Option A

    x2+17x+17x+289=0
    So, X =-17

    Y = -14
    =>x

     


  3. 4X2 + 24X + 36 =0
    5Y2 + 20Y + 20 =0
    x
    x<=y
    x>y
    x>=y
    none
    Option A
    4X2 + 24X + 36 =0
    X2 + 6X + 9 =0
    X2 + 3X + 3x + 9 =0
    X = -3
    5Y2 + 20Y + 20 =0
    Y2 + 4Y + 4 =0
    Y2 + 4Y + 4y + 4 =0
    Y= -2
    So, Y>X

     


  4. x5 = 32
    y10 = 1024
    x
    x<=y
    x>y
    x>=y
    none
    Option D
    x = 2 and y = + /- 2

     


  5. x2 + x = 56
    y2 - 17y + 72 = 0
    x
    x<=y
    x>y
    x>=y
    none
    Option A
    x2 + x = 56
    x2 + 8x - 7x -56 = 0
    x(x+8) -7 (x+8) =0
    (x+8) (x-7) =0
    x= -8 , 7
    y2 - 17y + 72 = 0
    y2 - 9y - 8y + 72 =0
    y(y-9) -8(y-9) = 0
    (y-9) (y-8) =0
    y= 9, 8
    x < y

     


  6. 3x² +13x +14 = 0
    3y²+11y+10 = 0
    x
    x<=y
    x>y
    x>=y
    none
    Option B
    . 3x² +13x +14 = 0
    => (3x+7) (x+2)
    => x = -7/3, -2
    3y²+11y+10 = 0
    => (y+2) (3y+5)
    => y = -2 , -5/3
    So x ≤ y


     


  7. 144x2 – 23 = 2
    12y+√25=√100
    x
    x<=y
    x>y
    x>=y
    none
    Option B
    144x2 = 23+2=25
    x2=25/144
    =>x=+or- 5/12
    12y+√25=√100
    12y= = 5
    y=5/12
    y ≥ x


     


  8. x2 – 32x + 255 = 0
    y2 - 39y + 378= 0
    x
    x<=y
    x>y
    x>=y
    none
    Option A
    x2 – 32x + 255 = 0
    x2 - 15x – 17x + 255 = 0
    x(x-15)-17(x-15)=0
    (x-15)(x-17)=0
    x=15,17
    y2 - 39y + 378 = 0
    y2 - 18y – 21y + 378 = 0
    y(y-18)-21(y-18)=0
    (y-18)(y-21)=0
    y=18, 21
    y>x

     


  9. x2 – 15x + 84 = 4x
    y2 – 15y + 156 = 10y
    x
    x<=y
    x>y
    x>=y
    none
    Option B
    x2 – 15x + 84 = 4x
    ⇒ x2 – 19x + 84 = 0
    ⇒ x2 – 12x – 7x + 84 = 0
    ⇒ x( x – 12) – 7 ( x – 12) = 0
    ⇒ (x – 7) (x – 12) = 0
    ⇒ x = 7, 12

    y2 – 15y + 156 = 10y
    ⇒ y2 -25y + 156 = 0
    ⇒ y2 – 12y – 13y + 156 = 0
    ⇒ y( y – 12) – 13 ( y – 12) = 0
    ⇒ (y – 13) (y – 12) = 0
    ⇒ y = 13, 12
    ∴ y ≥ x

     


  10. 6x + 3y = 24
    x +2y = 8.5
    x
    x<=y
    x>y
    x>=y
    none
    Option A
    x = 2.5 y = 3 heyce, x < y

     




No comments:

Post a Comment