- I. x2 -4x -21 = 0
II. y2 = 64xx<=yx>yx>=yHence the relation cannot be determinedOption E
x2 -4x -21 = 0
x2 -7x + 3x -21 = 0
x( x-7) + 3( x-7)=0
(x-7) (x+3)=0
x=7 or x= -3
y 2 = 64
y= ±8
Hence the relation cannot be determined
- I. x2 +7x +10 = 0
II. y2 -5y + 6=0x>yx>=yx< yx<=yit cannot be determinedOption C
x2 + 7x +10 = 0
x2 +2x + 5x + 10 = 0
x( x+ 2) + 5( x+2)=0
(x+2) (x+5)=0
x=-2 or x= -5
y2 -5y + 6=0
y2 -2y -3y+ 6=0
y(y-2) -3( y-2)=0
(y-2) ( y-3) =0
y= 2 or 3
so x< y
- I. x2 -8x +16 = 0
II. y2 +4y + 4=0x> yx>=yxx<=yit cannot be determinedOption A
x2 -8x +16 = 0
(x-4)2= 0
=>x=4
y2 +4y + 4=0
( y+ 2) 2 = 0
y= -2
Hence x> y
- I. x2 -12x +36 = 0
II. y2 +22y + 121=0x> yx>=yxx<=yit cannot be determinedOption A
x2 -12x +36 = 0
(x-6)2= 0
=>x=6
y2 +22y+121=0
( y+ 11) 2 = 0
y= -11
Hence x> y
- I. x2 +8x +15 = 0
II. y2 -10y + 24=0x>yx>=yx< yx<=yit cannot be determinedOption C
x2 + 8x +15 = 0
x2 +3x + 5x + 15 = 0
x( x+ 3) + 5( x+3)=0
(x+3) (x+5)=0
x=-3 or x= -5
y2 -10y + 24=0
y2 -4y -6y+ 24=0
y(y-4) -6( y-4)=0
(y-4) ( y-6) =0
y= 4 or 6
so x< y
- I. x2 -2x +1 = 0
II. y2 +8y + 16=0xx<=yx> yx>=yit cannot be determinedOption C
x2 -2x +1 = 0
(x-1)2= 0
=>x=1
y2 +8y + 16=0
( y+ 4) 2 = 0
y= -4
Hence x> y
- I. x2 -3x -10 = 0
II. y2 = 4xx<=yx>yx ≥ yit cannot be determinedOption D
x2 -3x -10 = 0
x2 -5x + 2x -10 = 0
x( x-5) + 2( x-5)=0
(x-5) (x+2)=0
x=5 or x= -2
y 2 = 4
y= ± 2
Hence x ≥ y
- I. x2 +24x + 144=0
II. y2 -18y +81 = 0xx<=yx>yx>=yit cannot be determinedOption A
x2 +24x + 144=0
( x+ 12) 2 = 0
x= -12
y2 -18y +81 = 0
(y-9)2= 0
=>y=9
Hence y> x
- I.2x2 +13x +15 = 0
II. y2 -6y -7=0xx<=yx>yx>=yit cannot be determinedOption A
2x2 +13x +15 = 0
2x2 +3x +10x +15 = 0
x( 2x + 3) + 5( 2x + 3)=0
(2x+3) ( x+5)=0
x= -3/2 or -5
y2 -6y -7=0
y2 -7y + y-7=0
y( y-7) + 1( y-7)=0
( y-7) ( y+1)=0
y= 7 or -1
Hence y> x
- I. x2 -2x -8=0
II. 4y2 +14y +6 = 0xx<=yx>yx>=yit cannot be determinedOption C
x2 -2x -8=0
x2 -4x + 2x-8=0
x( x-4) + 2( x-4)=0
( x-4) ( x+2)=0
x= 4 or -2
4y2 +14y +6 = 0
4y2 +2y +12y +6 = 0
y( 4y + 2) + 3( 4y + 2)=0
(4y+2) ( y+3)=0
y= -2/4 or -3
Hence x>y
- I. 3x2 +16x +5 = 0
II. 5y2+ 37y +60=0xx<=yx>yx≥yit cannot be determinedOption D
3x2 +16x +5 = 0
3x2 +x +15x +5 = 0
x( 3x + 1) + 5( 3x + 1)=0
(3x+1) ( x+5)=0
x= -1/3 or -5
5y2+ 37y +60=0
5y2 + 25y +12y +60
5y(y+5)+12(y+5)=0
( y+5)( 5y +12) =0
y= -5 or -12/5
Hence x≥y
- I. 2x2 -13x +20 = 0
II. 3y2-10y +7=0xx<=yx>yx<=yit cannot be determinedOption C
2x2 -13x +20 = 0
2x2 -8x -5x +20 = 0
2x(x-4) – 5(x-4) = 0
(x-4) ( 2x-5)=0
x= 4 or 5/2
3y2 -10y +7 = 0
3y2 -3y -7y +7 = 0
3y(y-1) – 7(y-1) = 0
(y-1) ( 3y-7)=0
y= 1 or 7/3
Hence x>y
- I. x2 -12x +20 = 0
II. 6y2 -29y +20 = 0xx<=yx>yx>=yit cannot be determinedOption C
x2 -12x +20 = 0
x2 -10x -2x +20 = 0
x(x-10) – 2(x-10) = 0
(x-10) ( x-2)=0
x= 10 or 2
6y2 -29y +20 = 0
6y2 -24y -5y +20 = 0
6y(y-4) – 5(y-4) = 0
(y-4) ( 6y-5)=0
y= 4 or 5/6
Hence x>y
- I. x2 -6x +8 = 0
II. y2 -6y +5 = 0xx<=yx>yx>=yHence the relation cannot be determinedOption E
x2 -6x +8 = 0
x2 -4x -2x +8 = 0
x(x-4) – 2(x-4) = 0
(x-4) ( x-2)=0
x= 4 or 2
y2 -6y +5 = 0
y2 -y -5y +5 = 0
y(y-1) – 5(y-1) = 0
(y-1) ( y-5)=0
y= 1 or 5
Hence the relation cannot be determined
- I. x2 -12x +32 = 0
II. y2 -20y +100 = 0xx<=yx>yx>=yit cannot be determinedOption A
x2 -12x +32 = 0
x2 -8x -4x +32 = 0
x(x-8) – 4(x-8) = 0
(x-8) ( x-4)=0
x= 8 or 4
y2 -20y +100 = 0
(y-10) ^2=0
y= 10
Hence y> x
- I. x2 -x -30 = 0
II. y 2 = 169xx<=yx>yx>=yHence the relation cannot be determinedOption E
x2 -x -30 = 0
x2 -6x + 5x -30 = 0
x( x-6) + 5( x-6)=0
(x-6) (x+5)=0
x=6 or x= -5
y 2 = 169
y= ±13
Hence the relation cannot be determined
- I.x2 + 3x -10 = 0
II. y2 -13y/2 + 3=0x< yx<=yx>yx>=yit cannot be determinedOption A
x2 + 3x -10 = 0
x2 -2x + 5x - 10 = 0
x( x- 2) + 5( x-2)=0
(x-2) (x+5)=0
x=2 or x= -5
y2 -13y/2 + 3=0
y2 –y/2 -6y+ 3=0
y(y-1/2) -6( y-1/2)=0
(y-1/2) ( y-6) =0
y= 1/2 or 6
so x< y
- I. x2 -10x +25 = 0
II. y2 +14y + 49=0xx<=yx> yx>=yit cannot be determinedOption C
x2 -10x +25 = 0
(x-5)2= 0
=>x=5
y2 +14y + 49=0
( y+ 7) 2 = 0
y= -7
Hence x> y
- I. x2 +30x +225 = 0
II. y2 -30y+225=0xx<=yx>yx>=yit cannot be determinedOption A
x2 +30x +225 = 0
(x+15)2= 0
=>x=-15
y2 -30y+225=0
( y- 15) 2 = 0
y= 15
Hence y>x
- I. x2 + 5x -36 = 0
II. y2 +3y + 2=0xx<=yx>yx>=ycannot be determinedOption E
x2 + 5x -36 = 0
x2 -4x + 9x -36 = 0
x( x-4) + 9( x-4)=0
(x-4) (x+9)=0
x=4 or x= -9
y2 +3y + 2=0
y2 +2y +y+ 2=0
y(y+2) + 1( y+2)=0
(y+2) ( y+1) =0
y= -2 or -1
so cannot be determined
- I. x2 +32x +256 = 0
II. y2 -28y + 196=0xx<=yx>yx>=yit cannot be determinedOption A
x2 +32x +256 = 0
(x+16)2= 0
=>x= -16
y2 -28y + 196=0
( y-14 ) 2 = 0
y= 14
Hence y>x
- I. x2 – 64=0
II. y1/2 = 5xx<=yx>yx>=yit cannot be determinedOption A
x2 – 64=0
(x-8) (x+8)=0
x=8 or x= -8
y 1/2 = 5
y= 25
Hence y>x
- I. x2 -18x +77 = 0
II. y2 +8y +15=0xx<=yx>yx>=yit cannot be determinedOption C
x2 -18x +77 = 0
x2 -7x -11x +77 = 0
x( x-7) -11( x-7)=0
(x-7) ( x-11)=0
x= 7 or 11
y2 +8y +15=0
y2 +5y +3 y+15=0
y( y+5) + 3( y+5)=0
( y+5) ( y+3)=0
y= -5or -3
Hence x> y
- I. x2 -12x +11 = 0
II. y2 -5y -150=0xx<=yx>yx>=yHence it cannot be determinedOption E
x2 -12x +11 = 0
x2 -x -11x +11 = 0
x( x-1) -11( x-1)=0
(x-1) ( x-11)=0
x= 1 or 11
y2 -5y -150=0
y2 +10y -15 y-150=0
y( y+10) -15( y+10)=0
( y+10) ( y-15)=0
y= -10 or +15
Hence it cannot be determined
- I. x2 +3x +2 = 0
II. y2 + y =0xx<=yx>yx>=yit cannot be determinedOption B
x2 +3x +2 = 0
x2 +x +2x +2 = 0
x( x+1) +2( x+1)=0
(x+1) ( x+2)=0
x= -1 or -2
y2 + y =0
y ( y+1)=0
y= 0 or -1
Hence x ≤ y
- I. x2 -24x +119 = 0
II. y2+ 6y + 8 =0xx<=yx>yx>=yit cannot be determinedOption C
x2 -24x +119 = 0
x2 -17x-7x +119 = 0
x( x-7) -17( x-7)
(x – 7)(x – 17) = 0
x = 7 or 17
y2+ 6y + 8 =0
y2 +4y +2y+8 = 0
y( y+4) +2( y+4)
(y+2)(y +4) = 0
y= -2 or -4
So, x >y
- I. 6x2 + x – 2 = 0
II. 20y2 – 13y + 2 = 0xx<=yx>yx>=ythe relation cannot be determined.Option E
6x2 + x – 2 = 0
(2x – 1)(3x + 2) = 0
x = 1/2 or -2/3
20y2 – 13y + 2 = 0
20y2 – 8y -5y+ 2 = 0
4y(5y -2) -1( 5y-2)=0
(4y– 1)(5y – 2) = 0
y = 1/4 or 2/5
So the relation cannot be determined.
- I. 3x2 + 13x+ 14 = 0
II. 2y4 – 3y2 + 2 = 0xx<=yx>yx>=yit cannot be determinedOption B
3x2 + 13x+ 14 = 0
3x2 + 7x + 6x + 14 = 0
(x + 2)(3x + 7) = 0
x = -2, -7/3
2y4 – 3y2 + 2 = 0
y4 -3y2/2 +1=0
y4 + y2/2 -2y2 +1=0
(y2 – 2)(y2 – 1/2) = 0
y= ±√ 2, , √1/2 or -√1/2
So, y≥ x
- I. x2 – 2x – 48= 0
II. 6y2 + 35y + 25 = 0xx<=yx>yx>=yit cannot be determinedOption E
x2 – 2x – 48= 0
x2 +6x –8x-48 = 0
(x – 8)(x + 6) = 0
x = -6 or + 8
6y2 + 35y + 25 = 0
6y2 +15y +10y + 25 = 0
(3y + 5)(2y + 5) = 0
y = -5/3 or -5/2
Hence it cannot be determined
- I. x2 -24x + 143 = 0
II. y2– 6y + 8 = 0xx<=yx>yx>=yit cannot be determinedOption C
x2 -24x + 143 = 0
x2 -13x-11x + 143 = 0
(x – 11)(x – 13) = 0
x = 11 or 1 3
y2– 6y + 8 = 0
y2– 2y -4y+ 8 = 0
(y– 4)(y– 2) = 0
y = 4 or 2
So y < x
Wednesday, February 5, 2020
Quantitative Aptitude: Quadratic Equations Questions Set 63
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment