- I. 6𝑥^2 + 77𝑥 + 121 = 0
II. 𝑦^2 + 9𝑦 − 22 = 0
No relationx ≥ yy ≥ xy > xx > yOption A
I.6x^2 + 77x + 121 = 0
6x ^2 + 66x + 11x + 121 = 0
6x(x + 11) + 11(x + 11) = 0
(6x + 11)(x + 11) = 0
x = − 11/ 6 , −11
II. Y^ 2 + 9y − 22 = 0
y^ 2 + 11y − 2y − 22 = 0
y(y + 11) − 2(y + 11)
(y − 2)(y + 11) = 0
y = 2, −11
No relation
- I. 25x² + 35x + 12 = 0
II. 10y² + 9y + 2 = 0
y > xNo relationx > yy ≥ xx ≥ yOption A
I. 25x² + 35x + 12 = 0
⇒ 25x² + 20x + 15x + 12 = 0
⇒ (5x + 4) (5x + 3) = 0
⇒ 𝑥 = − 4/5 , − 3/5
II. 10y² + 9y + 2 = 0
⇒ 10y² + 5y + 4y +2 = 0
⇒ (2y + 1) (5y + 2) = 0
⇒ y = − 1/2 , − 2/5
y > x
- I. 3x² - 13x + 14 = 0
II. 2y² - 5y + 3 =0
y ≥ xx > yy > xNo relationx ≥ yOption B
I. 3x² - 13x + 14 = 0
⇒ 3x² - 6x – 7x + 14 = 0
⇒ (x – 2) (3x – 7) = 0
⇒ 𝑥 = 2, 7/3
II. 2y² - 5y + 3 = 0
⇒ 2y² - 2y – 3y + 3 = 0
⇒ (y – 1) (2y – 3) = 0
⇒ y = 1, 3/2
x > y
- I. 2x² - 9x + 10 = 0
II. 2y² - 13y + 20 = 0
y > xy ≥ xx > yx ≥ yNo relationOption B
I. 2x² - 9x + 10 = 0
⇒ (x – 2) (2x - 5) = 0
⇒ 𝑥 = 2, 5/2
II. 2y² - 13y + 20 = 0
⇒ (y - 4) (2y - 5) = 0
⇒ 𝑦 = 4,5/2
y ≥ x
- I. 𝑥^2 − 19𝑥 + 84 = 0
II. 𝑦^2 − 25𝑦 + 156 = 0
x > yy ≥ xx ≥ yy > xNo relationOption B
I. 𝑥^ 2 − 19𝑥 + 84 = 0
𝑥^ 2 − 7𝑥 − 12𝑥 + 84 = 0
(𝑥 − 7)(𝑥 − 12) = 0
𝑥 = 7, 12
II. 𝑦 ^2 − 25𝑦 + 156 = 0
𝑦^2 − 13𝑦 − 12𝑦 + 156 = 0
(𝑦 − 13)(𝑦 − 12) = 0
⇒ 𝑦 = 13, 12
𝑥 ≤ y
- I. 𝑥^2 + 4𝑥 + 4 = 0
II. 𝑦^2 − 8𝑦 + 16 = 0
x ≥ yy > xy ≥ xx > yNo relationOption B
I. x 2 + 4x + 4 = 0
(x + 2)^2 = 0
⇒ x = −2
II. y 2 − 8y + 16 = 0
⇒ (y − 4)^2 = 0
⇒ y = 4
y > x
- I. x² = 144
II. y² - 24y + 144 = 0
x > yy ≥ xNo relationx ≥ yy > xOption B
I. x² = 144
⇒ 𝑥 = ±12
II. y² - 24y + 144 = 0
⇒ (y – 12) ² = 0
⇒ y – 12 = 0
⇒ y = 12
𝑥 ≤ y
- I. 3x² - 13x – 10 = 0
II. 3y² + 10y – 8 = 0
y ≥ xx ≥ yx > yy > xNo relationOption E
I. 3x² - 13x – 10 = 0
3x² - 15x + 2x – 10 = 0
(x – 5) (3x + 2) = 0
x= 5, − 2 /3
II. 3y² + 10y – 8 = 0
⇒ 3y² + 12y – 2y – 8 = 0
⇒ (y + 4) (3y – 2) = 0
⇒ 𝑦 = −4, 2/3
No relation
- I. 2x² - 21x + 52 = 0
II. 2y² - 11y + 12 = 0
y ≥ xy > xNo relationx ≥ yx > yOption D
I. 2x² - 21x + 52 = 0
⇒ 2x² - 8x – 13x + 52 = 0
⇒ (x – 4) (2x – 13) = 0
⇒ 𝑥 = 4, 13/2
II. 2y² - 11y + 12 = 0
⇒ 2y² - 8y – 3y + 12= 0
⇒ (y – 4) (2y – 3) = 0
⇒ 𝑦 = 4, 3 /2
x ≥ y
- I. 12x² + 7x + 1 = 0
II. 6y² + 5y + 1 = 0
y ≥ xNo relationy > xx > yx ≥ yOption E
I. 12x² + 7x + 1 = 0
⇒ 12x² + 4x + 3x + 1 = 0
⇒ (3x + 1) (4x + 1) = 0
⇒ 𝑥 = − 1/ 4 , − 1/ 3
II. 6y² + 5y+ 1= 0
⇒ (2y + 1) (3y + 1) = 0
⇒ 𝑦 = − 1 /2 , − 1/ 3
x ≥ y
Tuesday, June 25, 2019
Quantitative Aptitude: Quadratic Equations Questions Set 56
Directions(1-10): Find the value of x and y and compare their values, then choose a correct option.
Labels:
Quantitative Aptitude
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment