- I) m2 – 3m – 28 = 0
II) n2 – n – 72 = 0mm<=nm>nm>=nCan’t be determinedOption E
I) m2 – 3m – 28 = 0
(m + 4) (m – 7) = 0
M = -4, 7
II) n2 – n – 72 = 0
(n + 8) (n – 9) = 0
N = -8, 9
Can’t be determined
- I) 3m2 + 19m + 28 = 0
II) 2n2 + 13n + 21 = 0mm<=nm>nm>=nCan’t be determinedOption E
I) 3m2 + 19m + 28 = 0
3m2 + 12m + 7m + 28 = 0
3m (m + 4) + 7 (m + 4) = 0
(3m + 7) (m + 4) = 0
m = -7/3, -4 = -2.33, – 4
II) 2n2 + 13n + 21 = 0
2n2 + 6n + 7n + 21 = 0
2n (n + 3) + 7 (n + 3) = 0
(2n + 7) (n + 3) = 0
n = -7/2, -3 = -3.5, -3
I) 3m2 + 19m + 28 = 0
3m2 + 12m + 7m + 28 = 0
3m (m + 4) + 7 (m + 4) = 0
(3m + 7) (m + 4) = 0
m = -7/3, -4 = -2.33, – 4
II) 2n2 + 13n + 21 = 0
2n2 + 6n + 7n + 21 = 0
2n (n + 3) + 7 (n + 3) = 0
(2n + 7) (n + 3) = 0
n = -7/2, -3 = -3.5, -3
Can’t be determined
- I) 2m – 3n = -6
II) 3m + 4n = 25m < nm<=nm>nm>=ncan't be determinedOption A
2m-3n = -6 –> (1)
3m + 4n = 25 –> (2)
Bn solving the equation (1) and (2),
m = 3, n = 4
m < n
- I) 12m2– 37m + 21 = 0
II) 15n2 + 54n + 27 = 0m < nm<=nm > nm>=ncan't be determinedOption C
I) 12m2 – 37m + 21 = 0
12m2 – 28m – 9m + 21 = 0
4m (3m – 7) – 3 (3m – 7) = 0
(4m – 3) (3m – 7) = 0
m = ¾, 7/3 = 0.75, 2.33
II) 15n2 + 54n + 27 = 0
15n2 + 45n+ 9n + 27 = 0
15n (n + 3) + 9 (n + 3) = 0
(15n + 9) (n + 3) = 0
n = -9/15, -3 = -3/5, -3
- I) m2 + 3√7 m – 70 = 0
II) n2 + 2√3 n – 105 = 0m < nm<=nm>nm>=nCan’t be determinedOption E
I) m2 + 3√7 m – 70 = 0
m2 + 5√7 m – 2√7 m – 70 = 0
(m + 5√7) (m – 2√7) = 0
m = 2√7, – 5√7
II) n2 + 2√3 n – 105 = 0
n2 + 7√3 n – 5√3 n – 105 = 0
(n + 7√3) (n – 5√3) = 0
n = 5√3, – 7√3
Can’t be determined
- I) 14x² – 5√15 x – 90 = 0
II) 6y² + √21 y – 21 = 0x < yx<=yx>yx>=yrelationship between x and y cannot be determinedOption E
I) 14x²-5√15 x-90=0
14x²-12√15 x+7√15 x – 90 = 0
2x(7x – 6√15)+ √15(7x – 6√15) = 0
(2x + √15)(7x – 6√15) = 0
x = -√15/2, (6√15)/7
II) 6y²+√21 y-21=0
6y²+3√21 y-2√21 y -21=0
3y(2y+√21)- √21(2y+√21)=0
(3y- √21)(2y+√21)=0
y =√21/3 ,-√21/2
Hence, relationship between x and y cannot be determined
- I) 3x2– 13√2x + 24 = 0
II) y2– 4√2y + 6 = 0x < yx<=yx>yx>=yrelationship between x and y cannot be determinedOption E
I) 3x2– 13√2x + 24 = 0
3x2 – 9√2x – 4√2x + 24 = 0
3x(x – 3√2) – 4√2 (x – 3√2) = 0
(3x – 4√2)(x – 3√2) = 0
x = 4√2/3, 3√2
II)y2– 4√2y + 6 = 0
y2 – √2y – 3√2y + 6 = 0
y(y – √2) – 3√2 (y – √2) = 0
(y – √2) (y – 3√2) = 0
y = √2, 3√2
Hence, relationship between x and y cannot be determined
- I) 3x2– (6 + √5)x + 2√5 = 0
II) 8y2– (16 + 3√5)y + 6√5 = 0x < yx<=yx>yx>=yrelationship between x and y cannot be determinedOption E
I) 3x2– (6 + √5)x + 2√5 = 0
3x2 – 6x – √5x + 2√5 = 0
3x (x – 2) – √5 (x – 2) = 0
(3x – √5) (x – 2) = 0
x = √5/3,2
II) 8y2– (16 + 3√5)y + 6√5 = 0
8y2 – 16y – 3√5y + 6√5 = 0
8y (y – 2) – 3√5 (y – 2) = 0
(8y – 3√5) (y – 2) = 0
y = (3√5)/8, 2
Hence, relationship between x and y cannot be determined
- I) 18x² – 63x + 40 = 0
II) 12y² + 47y + 45 = 0x < yx<=yx>yx>=yrelationship between x and y cannot be determinedOption C
I) 18x² – 63x + 40 = 0
18x²-15x-48x+40=0
3x(6x-5)-8(6x-5)=0
(3x-8)(6x-5)=0
x=8/3,5/6
II) 12y²+47y+45=0
12y²+27y+20y+45=0
3y(4y+9)+5(4y+9)=0
(3y+5)(4y+9)=0
Y =-5/3,-9/4
Hence, x > y
- I) 20x²-119x+176=0
II) 45y²+200y+155=0x < yx<=yx>yx>=yrelationship between x and y cannot be determinedOption C
I) 20x²-119x+176=0
20x²-64x-55x+176=0
4x(5x-16)-11(5x-16)=0
(4x-11)(5x-16)=0
x=11/4,16/5
II) 45y²+200y+155=0
45y²+45y+155y+155=0
45y(y+1)+155(y+1)=0
(45y+155)(y+1)=0
y=-155/45,-1
Hence, x > y
Sunday, March 8, 2020
Quantitative Aptitude: Quadratic Equations Questions Set 65
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment