Friday, May 22, 2020

Mixed Quantitative Aptitude Questions Set 202

  1. An amount A is invested in scheme 1 for 2 years at 10% p.a compounded annually and an amount B is invested in scheme 2 for 3 years at 16% p.a simple interest. If the interest earned by scheme 1 is 87.5% of interest earned by scheme 2 and the total sum of amount invested in both scheme is Rs 9000. Then find the amount invested in scheme 1.

    6000
    5000
    4000
    7000
    8000
    Option A
    A+ B = 9000 ——– i

    In scheme 1,

    Net effective rate = 10 + 10 + (10 * 10)/100 = 21%

    Interest = 21x/100

    Net effective rate = 3 * 16 = 48%

    Interest = 48y/100

    According to question,

    48y/100 * 87.5/100 = 21x/100

    48y/100 * 87.5 = 21x

    4200y/100 = 21x

    2y = x —— ii

    Putting (ii) in (i)

    x + y = 9000

    2y + y = 9000

    y = 3000

    x = 9000 – 3000 = 6000


     


  2. Lallu alone can do a piece of work in 25 days and Mallu is 16.66% inefficient less than Lallu. Mallu and Lallu started working together for 6 days then Shalu alone completed the rest work in 21 days. In how many days Shalu alone can complete the whole work?

    41.5 days.
    40.5 days.
    36.5 days.
    35.5 days.
    37.5 days.
    Option E
    Time taken by Lallu alone = 25 days

    Ratio of efficiency of Mallu and Lallu = 5 : 6

    Ratio of time taken by Mallu and Lallu = 6 : 5

    Therefore, time taken by Mallu alone = 30 days

    Total work = LCM of 30 and 25 = 150 units

    1 day work of Mallu = 150/30 = 5 units

    1 day work of Lallu = 150/25 = 6 units

    1 day work of (Lallu+ Mallu) = 5 + 6 = 11 units

    6 days work of (A + B) = 7 * 11 = 66 units

    Left work = 150 – 66 = 84 units

    Now, Shalu can complete 84 units = 21 days

    150 units = 21 * 150/84 = 37.5 days.

     


  3. A box contains x green marbles, 4 red marbles and 5 white marbles 3 marbles are picked up randomly one after the another without replacement from the box. Find the value of x if probability of 3 marbles being green is 1/16.

    9
    8
    7
    6
    5
    Option C
    Probability of getting 1st green marble = x/(x + 4 + 5) = x/x + 9

    Probability of getting 2nd green marble without replacement = (x – 1)/(x + 8)

    Probability of getting 3rd green marble without replacement = (x – 2)/(x + 7)

    By question,

    [x/x + 9] * [(x – 1)/(x + 8)] * [(x – 2)/(x + 7)] = 1/16
    Now we will check through option and hence, option A = 7 satisfied the equation

    So, value of x = 7


     


  4. Kiran purchased an old car for Rs 30000 and spent 3500 in servicing, 1500 in engine repair. If he wants to earn 20% profit then at what price he must have to sell the car?

    Rs 12000
    Rs 52000
    Rs 32000
    Rs 42000
    Rs 40000
    Option D
    Total C.P of car = (30000 + 3500 + 1500) = Rs 35000

    Required Profit = 20%

    So, required S.P = 120/100 * 35000 = Rs 42000


     


  5. Man 1 and 2 started a business by investing Rs 2500 and Rs 2200 respectively. After 7 months they had invested 500 and 800 more amounts respectively. If the difference between the share of 1 and 2 is Rs 3486, find the total share earned after 1 year.

    Rs 103314
    Rs 204414
    Rs 104414
    Rs 103489
    Rs 105000
    Option C
    Ratio of shares of 1 and 2 = (2500 * 7 + 3000 * 5) + (2200 * 7 + 3000 * 5)

    = 325: 304

    Let the total profit earned after 1 year = x

    So, (325 – 304)/(325 + 304) * x = 3486

    21x/629 = 3486

    x = Rs 104414


     


  6. 8 years ago the average ages of Lalith and Brijesh is 31 years and the present age of Lalith is 12 years less than the average of the ages of Brijesh and Simon 6 years hence. If Brijesh is 24 years elder than Simon, then find Simon’s age after 2 years?

    26
    27
    21
    22
    25
    Option A
    Lalith + Brijesh = 31 * 2 + 16 = 78———-(1)

    (Brijesh + 6 + lalith + 6)/2 – A = 12

    Brijesh + Simon – 2Lalith = 12——–(2)

    Brijesh – Simon = 24———–(3)

    (2) + (3)

    2Brijesh – 2Lalith = 36

    Brijesh – Lalith = 18——-(4)

    (4) + (1)

    2Brijesh = 96

    Brijesh = 48 years

    Simon= 48 – 24 = 24 years

    Simon’s age after 2 years = 24 + 2 = 26 years


     


  7. If the ratio of the radius to slanting height of the conical vessele is 3:5 and volume of the cylindrical vessele is equal to the volume of the conical vessele. If the radius of the cylinder is 4 cm and the height of the cylindrical vessele is equal to the side of the square whose perimeter is 192 cm, then what is the curved surface area of the conical vessele?

    200∏
    140∏
    210∏
    240∏
    540∏
    Option D
    Height of the conical vessele = √(5x2 – 3x2) = 4x

    Volume of the conical vessele = 1/3 * 22/7 * r2 * h

    Volume of the cylindrical vessele = 22/7 * r2 * h

    Side of the square = 192/4 = 48

    Height of the cylindrical vessele = 12

    1/3 * 22/7 * 3x * 3x * 4x = 22/7 * 4 * 4 * 48

    x = 4 cm

    Radius of the conical vessele = 3 * 4 = 12 cm

    Slating height of the conical vessele = 5 * 4 = 20 cm

    CSA of the conical vessele = 22/7 * r * l

    = 22/7 * 12 * 20 = 240∏


     


  8. Mayur and Suraj started the business with the investment in the ratio of 5:2 and after 6 months Suraj withdrew half of his initial investment. At the end of one year Mayur and Suraj gets Rs.4000 and Rs.1500 from the total profit obtained for managing the business and the profit ratio of Mayur and Suraj is 3:1. What is the total profit obtained at the end of year?

    14500
    16000
    14500
    13000
    12000
    Option E
    Profit ratio of Mayur and Suraj = 5x * 12:(2x * 6 + x * 6)

    = 10:3

    Total profit = (13x + 4000 + 1500) = 13x + 5500

    (10x + 4000)/(3x + 1500) = 3/1

    9x + 4500 = 10x + 4000

    x = 500

    Total profit = 13 * 500 + 5500 = 12000


     


  9. The ratio of the monthly salary of person 1 to 2 is 4:3 and the ratio of the monthly salary of 2 to 3 is 2:1. If the difference between the 3’s monthly income and his savings is Rs.12000 and the saving’s of 3 is half of his expenditure, then what is the average of the income of person 1, 2 and 3?

    24000
    14000
    34000
    30000
    20000
    Option C
    person 3’s salary = x

    Expenditure = y

    Savings = s

    x = y + s

    y + s – s = 12000

    y = 12000

    Savings = 12000 * ½ = 6000

    x = 12000 + 6000 = 18000

    person 2’s income = 2/1 * 18000 = 36000

    person 1’s income = 4/3 * 36000 = 48000

    Average income of 1, 2 and 3 = (48000 + 36000 + 18000)/3 = 34000


     


  10. If the marked price of the chair is Rs.6000 more than the money Kunal had but the merchant offers two successive discounts 10% and 5% respectively. Now he left with him Rs.9370. What is the marked price of the chair?

    116000
    105000
    106000
    100000
    105550
    Option C
    Kunal have = x

    MP of the mobile = x + 6000

    (x + 6000) * 90/100 * 95/100 + 9370 = x

    0.855x + 5130 + 9370 = x

    x = 100000

    MP of chair = 100000 + 6000 = 106000


     




No comments:

Post a Comment