- Calculate the approximate value of the question mark (?) in the given questions:
149.88% of 19.89 + √360.81 × 3.98 = ? – 139.89
246
256
305
315
None of these
Option A
30 + 19*4 =x - 140
30 + 7+ = x - 140
x = 246
- ? + 1349.79 ÷ 4.99 – 124.89 = 120.10% of 1649.98
1765
1835
2135
1555
None of these
Option B
x+ 1350/5 - 125 = 120/100 * 1650
x + 270 - 125 = 1980
x + 145 = 1980
x = 1835
- (?)² + 180.44 × 4.8 + 64.9 × 3.9 = 2384.88
55
45
35
40
None of these
Option C
x^2 + 180 * 5 + 65 * 4 = 2385
x^2 + 900 + 260 = 2385
x= 1225
- ?% of 299.98 = (21.09)² + (18.97)² + (6.15)^3 + 2.22
305
295
335
340
350
Option D
x/100 * 300 = 441 + 361 + 216 + 2
x/100 * 300= 1020
3 x = 1020
x = 340
- ?^3 × 19.98 + 15.05 % of 450.03 = (14.02)^2 + 5^√31.99
1
3
2
4
9
Option C
x^3 * 20 + 15/100 * 450 = 196 + 2
x^3 *20 + 67.5 = 198
x^3 *20 =130.5
x^3= 6.525
x=1.86 = 2
- 1575.23 / 45.09 + 25.05 * √255.85 = ?
435
440
395
405
515
Option A
1575 / 45 + 25 * 16
35 + 25 * 16
35 + 400 = 435
- 25 + 3.9 × 9.9 + 9.98 = ?
65
75
55
45
None of these
Option B
25 + 4 * 10 + 10 = ?
25 + 40 + 10 = ?
x = 75
- (350 × 9.99) ÷ 5.4001 + 1245.20 = ?
1805
2455
2005
2105
1945
Option E
(350 * 10) /5 + 1245 = ?
3500/5 + 1245 =?
x = 1945
- 30.95² – 10.05² + (1987.29 + 24.85 ÷ ?) = 900
1
2
3
4
7
Option A
31^2 - 10^2 + (1987 + 25 / X) = 900
961 - 100 + (2012 /x) =900
861 x +2012 = 900
x = 1.29 = 1
- 140% of 3780 + 38.78% of 140 = ?
5001
5187
5487
5355
5347
Option E
140/100 * 3780 + 39/100 * 140 = x
5292 + 54.6 = x
5347 = x
No comments:
Post a Comment